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The spectroscopic data recorded by dispersion spectrophotometer are usually degraded by the response
function of the instrument. To improve the resolving power, double or triple cascade spectrophotometer
and narrow slits have been employed, but the total flux of the radiation decreases accordingly, resulting in
a lower signal-to-noise ratio (SNR) and a longer measuring time. However, the spectral resolution can be
improved by mathematically removing the effect of the instrument response function. Based on the Shalvi-
Weinstein criterion, a Gauss-Newton based kurtosis blind deconvolution algorithm for spectroscopic data
is proposed. Experiments with some real measured Raman spectroscopic data show that this algorithm

has excellent deconvolution capability.
OCIS codes: 300.6170, 300.6320, 300.6450.

The spectra recorded by dispersion spectrometer are usu-
ally degraded by the response function of the instrument.
The major factors of the instrument response function
limiting the resolving power are the slit width and the
diffractive limit of the dispersion grating. To improve
the resolving power, double or triple cascade spectrome-
ter, and narrow slits have been employed!), but the total
flux of the radiation available decreases accordingly, re-
sulting in a low signal-to-noise ratio (SNR) and a longer
measure time. Hence, there is a trade-off between the
resolving power, the SNR, and the measure time. How-
ever, spectral resolution can be significantly improved by
mathematically removing the effect of the instrument re-
sponse function. If the instrument response function is
a prior knowledge, it is named deconvolution. The most
popular method is Wiener filtering!?!. In practical ap-
plications, the instrument response function is often un-
known in advance, even if it can be measured accurately,
it may change along with the time. So the blind decon-
volution is a more significant work by which the true
spectra can be estimated from the measured data. Senga
et al.l¥ developed a blind deconvolution method based
on homomorphic filtering and applied it to the blind de-
convolution of infrared molecular absorption spectra suc-
cessfully. However, this method requires calculating the
logarithm of the Fourier spectrum, which is time con-
suming, and is limited to the case where the spectral slit
function is triangle. The Jansson algorithm[¥ starts from
an initial guess of the true spectra, and estimates them
iteratively. But the choice of the convolution kernel is
often not true. Yuan et al.[>*% proposed a high-order sta-
tistical algorithm of blind deconvolution for spectroscopic
data.

In this letter, based on the Shalvi-Weinstein
criterion” a kurtosis Gauss-Newton based algorithm is
proposed for spectroscopic data blind deconvolution. The
real measured spectroscopic data experimentally demon-
strate the feasibility of this method. Most spectroscopic
data measured by spectrophotometer can be mathemati-
cally modeled as a convolution of the true spectrum and
a unit-impulse response function¥ (convolution kernel),

1671-7694/2006,/080490-03

ie.,
x=fxw, (1)

where * denotes the convolution operation, and w =
(w(1),w(2), - ,w(N)" is the true spectrum, x =
(z(1),2(2), -+, 2 (N))" is the measured spectroscopic
data, f = (fo, f1, f2, - -)T is the convolution kernel.

The true spectrum can be restored by the inverse op-
eration of the convolution in principle

y =g *X, (2)

where y = (y (1),y(2),---,y (N))T is the deconvoluted
data, and g = (g0, 91, - ,gQ)T is the unit impulse re-
sponse function (deconvolution kernel) of the deconvolu-
tion operation with finite length @ + 1.

For the ideal deconvolution, the deconvoluted data y
should satisfy

y(n) =w(n). 3)

But for high-order statistical blind deconvolution algo-

rithm (for real value data), only following equation can
be achieved approximately!”

y(n) ==Fw(n—m), (4)
where m is the spectral-shift parameter which means
that, compared with the true spectrum, the estimated
spectrum may have spectral shift m. This shift and the
sign ambiguity can be corrected by the correlation oper-
ation.

So the cascades of the convolution and deconvolution
should satisfy

h=gxf =4 (5)
or in matrix form
h=Fg =, (6)

where h = (ho,hl,hg,---)T, 0 denotes the Kronecker
delta function, and F is a Teoplitz matrix with @ + 1
columns and possibly an infinite number of rows whose
elements are

Fi; =fi—;, 0<j5<Q. (7)
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If f is known in advance, g is known accordingly, the op-
eration is named deconvolution which can be resolved by
Wiener filtering method[?. Unfortunately, in most prac-
tical applications, f is not known exactly, w should be
estimated from the measured data x, it is hereby named
blind deconvolution.

Because all the spectroscopic data are real value, the
normalized kurtosis based Shalvi-Weinstein criterion of
blind deconvolution[” is max |k, (4,2)|, where

b (42) = 2 = 0

is the kurtosis of the estimated data y, and p, (k) is the
kth central moment of y, which can be obtained by

wy (k) = E{[y —=m,)'}, for k=24,  (9)

where E{-} denotes the expectation operation, m, =
E {y} is the mean of y. To maximize the kurtosis ampli-
tude |k, (4,2)|, the necessary condition is that the gradi-
ent of |k, (4,2)| with respect to g is equal to zero vector,
namely

fy (2) Vg [y (4)] = 211y (4) Vg [y (2)] - (10)

Gauss-Newton algorithm!®! is a well known optimiza-
tion algorithm. However, for the spectroscopic data blind
deconvolution, it has special formulation. In the follow-
ing, we will provide the Gauss-Newton algorithm for the
application. Only at the optimal point, these equations
are satisfied, we hereby define a nonzero error vector

e(g) = 1y (2) Vg [y (4)] = 21y (4) Vg [y (2)],  (11)
then perturb the deconvolution kernel g to g+d in a man-
ner to drive the perturbed error vector e (g + d) closer
to zero vector than e(g). By linear approximation, we
obtain

e(g+d)~e(g)+Mgd, (12)
where the (Q + 1) x (Q + 1) matrix Mg is given by
M, = p, (2) Hy (4) — 20, (4) Hg (2)

+Vg [y (4)] Vg [y (2)]" = 2Vg [y (2)] Vg [y (4]
(13)
and the (Q + 1) x (@ + 1) matrix Hg is

Hy (),

i =k (k=1 B{y —m,)"?
[z (n—i) = E{z(n—i)}][z(n—j) - E{z(n—j)}}
(14)
The perturbation vector d is selected so as make the er-
ror vector equal zero vector, which is obtained by solving
Eq. (12)

d’ = —Mgle (&) - (15)

Before applying the algorithm above-proposed to the
real spectra, proper length @ + 1 should be decided.
Sufficiently long @ + 1 can result in sufficient decon-
volution. However, too long @ + 1 may degrade the
accuracy of the central moments in Eq. (9). We set
Q+ 1= A, simply, where A,, is the full-width at half-
maximum (FWHM) of the narrowest spectral line. g is
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Fig. 1. (a) A set of Raman spectroscopic data of glucopy-
ranose from 153 to 999 cm™! with length N = 847; (b) the
estimated spectrum of (a).
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Fig. 2. (a) A set of Raman spectroscopic data of D-glucuronic
from 613.7 to 4800 cm ™! with length N = 794; (b) the esti-
mated spectrum of (a).
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initialized randomly with the constraint ||g|| = 1.

To demonstrate the feasibility of this algorithm, we ap-
ply it to two real measured Raman spectra. Figure 1(a)
is a set of Raman spectroscopic data of glucopyranose
from 153 to 999 cm~! with length N = 847, Fig. 1(b) is
the estimated true spectrum. Here, Q = Agqo — 1 = 6.
It is clearly displayed that the spectral resolution is im-
proved remarkably. The peak at 406 cm™! is split into
two peaks at 396 and 407 cm~! respectively. The peak
at 542 cm ™! is split into two peaks at 542 and 559 cm ™!
respectively. Figure 2(a) is a set of Raman spectroscopic
data of D-glucuronic from 613.7 to 4800 cm~! with length
N = 794, Fig. 2(b) is the estimated spectrum. Here
Q = Asgs — 1 = 8. The peak at 382 cm™! is split into
three peaks at 368, 375, and 383 cm ™! respectively. The
peak at 423 cm™! is split into three peaks at 416, 424,
and 432 cm ™! respectively. From the experiments above-
mentioned, excellent decnvolution results are achieved.

Based on the Shalvi-Weinstein criterion, a normalized
kurtosis based algorithm for spectroscopic data blind de-
convolution is proposed. With the experiments on some
real measured Raman spectroscopic data, this algorithm
has excellent deconvolution capability. The spectral res-
olution can be improved considerably. The length of the
deconvolution kernel ) + 1 influences the deconvolution
results. Sufficiently long @ + 1 can result in sufficient
deconvolution. However, too long () + 1 may degrade the

accuracy of the central moments. We simply set Q + 1
be equal to the FWHM of the narrowest spectral line in
above-mentioned experiments. However, because the di-
mensions of matrices Mg and Hg are (Q + 1) x (Q + 1),
for the deconvolution kernel with longer length @ + 1, it
can be very computationally demanding.

J. Yuan’s e-mail address is jacobyuan@yahoo.com.cn.
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